Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.
Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.
Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Custom foam pillow OEM in Vietnam
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Vietnam high-end foam product OEM/ODM
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Custom graphene foam processing China
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Orthopedic pillow OEM solutions Indonesia
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Thailand orthopedic insole OEM manufacturer
A recent study suggests that the primary components of life on Earth may have originated from solar eruptions. The research demonstrated that solar particles colliding with gases in Earth’s primitive atmosphere could produce amino acids and carboxylic acids, the fundamental elements of proteins and organic life. Using data from NASA’s Kepler mission, researchers proposed that energetic particles from the sun, during its early superflare stage, would regularly interact with our atmosphere, triggering essential chemical reactions. Experimental replications indicated that solar particles appear to be a more efficient energy source than lightning for the formation of amino acids and carboxylic acids. Credit: NASA/Goddard Space Flight Center A new study posits that the earliest building blocks of life on Earth, namely amino acids and carboxylic acids, may have been formed due to solar eruptions. The research suggests that energetic particles from the sun during its early stages, colliding with Earth’s primitive atmosphere, could have efficiently catalyzed essential chemical reactions, thus challenging the traditional “warm little pond” theory. The first building blocks of life on Earth may have formed thanks to eruptions from our Sun, a new study finds. A series of chemical experiments show how solar particles, colliding with gases in Earth’s early atmosphere, can form amino acids and carboxylic acids, the basic building blocks of proteins and organic life. The findings were published in the journal Life. To understand the origins of life, many scientists try to explain how amino acids, the raw materials from which proteins and all cellular life, were formed. The best-known proposal originated in the late 1800s as scientists speculated that life might have begun in a “warm little pond”: A soup of chemicals, energized by lightning, heat, and other energy sources, that could mix together in concentrated amounts to form organic molecules. Artist’s concept of Early Earth. Credit: NASA In 1953, Stanley Miller of the University of Chicago tried to recreate these primordial conditions in the lab. Miller filled a closed chamber with methane, ammonia, water, and molecular hydrogen – gases thought to be prevalent in Earth’s early atmosphere – and repeatedly ignited an electrical spark to simulate lightning. A week later, Miller and his graduate advisor Harold Urey analyzed the chamber’s contents and found that 20 different amino acids had formed. “That was a big revelation,” said Vladimir Airapetian, a stellar astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and coauthor of the new paper. “From the basic components of early Earth’s atmosphere, you can synthesize these complex organic molecules.” But the last 70 years have complicated this interpretation. Scientists now believe ammonia (NH3) and methane (CH4) were far less abundant; instead, Earth’s air was filled with carbon dioxide (CO2) and molecular nitrogen (N2), which require more energy to break down. These gases can still yield amino acids, but in greatly reduced quantities. Seeking alternative energy sources, some scientists pointed to shockwaves from incoming meteors. Others cited solar ultraviolet radiation. Airapetian, using data from NASA’s Kepler mission, pointed to a new idea: energetic particles from our Sun. Kepler observed far-off stars at different stages in their lifecycle, but its data provides hints about our Sun’s past. In 2016, Airapetian published a study suggesting that during Earth’s first 100 million years, the Sun was about 30% dimmer. But solar “superflares” – powerful eruptions we only see once every 100 years or so today – would have erupted once every 3-10 days. These superflares launch near-light speed particles that would regularly collide with our atmosphere, kickstarting chemical reactions. Energy from our young Sun – 4 billion years ago – aided in creating molecules in Earth’s atmosphere that allowed it to warm up enough to incubate life. Credit: NASA’s Goddard Space Flight Center/Genna Duberstein “As soon as I published that paper, the team from the Yokohama National University from Japan contacted me,” Airapetian said. Dr. Kobayashi, a professor of chemistry there, had spent the last 30 years studying prebiotic chemistry. He was trying to understand how galactic cosmic rays – incoming particles from outside our solar system – could have affected early Earth’s atmosphere. “Most investigators ignore galactic cosmic rays because they require specialized equipment, like particle accelerators,” Kobayashi said. “I was fortunate enough to have access to several of them near our facilities.” Minor tweaks to Kobayashi’s experimental setup could put Airapetian’s ideas to the test. Proton Power vs. Lightning Energy Airapetian, Kobayashi, and their collaborators created a mixture of gases matching early Earth’s atmosphere as we understand it today. They combined carbon dioxide, molecular nitrogen, water, and a variable amount of methane. (The methane proportion in Earth’s early atmosphere is uncertain but thought to be low.) They shot the gas mixtures with protons (simulating solar particles) or ignited them with spark discharges (simulating lightning), replicating the Miller-Urey experiment for comparison. As long as the methane proportion was over 0.5%, the mixtures shot by protons (solar particles) produced detectable amounts of amino acids and carboxylic acids. But the spark discharges (lightning) required about a 15% methane concentration before any amino acids formed at all. “And even at 15% methane, the production rate of the amino acids by lightning is a million times less than by protons,” Airapetian added. Protons also tended to produce more carboxylic acids (a precursor of amino acids) than those ignited by spark discharges. A close up of a solar eruption, including a solar flare, a coronal mass ejection, and a solar energetic particle event. Credit: NASA’s Goddard Space Flight Center All else being equal, solar particles appear to be a more efficient energy source than lightning. But all else likely wasn’t equal, Airapetian suggested. Miller and Urey assumed that lightning was just as common at the time of the “warm little pond” as it is today. But lightning, which comes from thunderclouds formed by rising warm air, would have been rarer under a 30% dimmer Sun. “During cold conditions you never have lightning, and early Earth was under a pretty faint Sun,” Airapetian said. “That’s not saying that it couldn’t have come from lightning, but lightning seems less likely now, and solar particles seems more likely.” These experiments suggest our active young Sun could have catalyzed the precursors of life more easily, and perhaps earlier, than previously assumed. Reference: “Formation of Amino Acids and Carboxylic Acids in Weakly Reducing Planetary Atmospheres by Solar Energetic Particles from the Young Sun” by Kensei Kobayashi Jun-ichi Ise, Ryohei Aoki, Miei Kinoshita, Koki Naito, Takumi Udo, Bhagawati Kunwar, Jun-ichi Takahashi, Hiromi Shibata, Hajime Mita, Hitoshi Fukuda, Yoshiyuki Oguri, Kimitaka Kawamura, Yoko Kebukawa and Vladimir S. Airapetian, 28 April 2023, Life. DOI: 10.3390/life13051103
This image superimposes hippocampal local field potentials on railway tracks controlled by a switch that is overlaid by a dentate spike colored yellow. Railway tracks provide different pathways to distinct destinations, like different hippocampal information processing modes can enable distinctive memory encoding and recollection information processing functions. Credit: André Fenton, New York University A team of scientists has uncovered a system in the brain used in the processing of information and in the storing of memories — akin to how railroad switches control a train’s destination. The findings offer new insights into how the brain functions. “Researchers have sought to identify neural circuits that have specialized functions, but there are simply too many tasks the brain performs for each circuit to have its own purpose,” explains André Fenton, a professor of neural science at New York University and the senior author of the study, which appears in the journal Cell Reports. “Our results reveal how the same circuit takes on more than one function. The brain diverts ‘trains’ of neural activity from encoding our experiences to recalling them, showing that the same circuits have a role in both information processing and in memory.” This newly discovered dynamic shows how the brain functions more efficiently than previously realized. “When the same circuit performs more than one function, synergistic, creative, and economic interactions become possible,” Fenton adds. To explore the role of brain circuits, the researchers examined the hippocampus — a brain structure long known to play a significant role in memory — in mice. They investigated how the mouse hippocampus switches from encoding the current location to recollecting a remote location. Here, mice navigated a surface and received a mild shock if they touched certain areas, prompting the encoding of information. When the mice subsequently returned to this surface, they avoided the area where they’d previously received the shock–evidence that memory influenced their movement. The analysis of neural activity revealed a switching in the hippocampus. Specifically, the scientists found that a certain type of activity pattern in the population of neurons known as a dentate spike, which originates from the medial entorhinal cortex (DSM), served to coordinate changes in brain function. “Railway switches control each train’s destination, whereas dentate spikes switch hippocampus information processing from encoding to recollection,” observes Fenton. “Like a railway switch diverts a train, this dentate spike event diverts thoughts from the present to the past.” Reference: “Dentate spikes and external control of hippocampal function” by Dino Dvorak, Ain Chung, Eun Hye Park and André Antonio Fenton, 4 August 2021, Cell Reports. DOI: 10.1016/j.celrep.2021.109497 This research was supported by grants from the National Institutes of Health (R01NS105472 and R01MH099128).
A team from the Hong Kong University of Science and Technology has advanced our understanding of carboxysomes—structures in bacteria and algae that fix carbon. They’ve shown how these can be purified and their structure detailed, paving the way for potential applications in enhancing plant photosynthesis and crop yield, which could help increase food supplies and combat global warming. Their future plans include modifying these structures to improve their functionality and integrating them into plants to test their effectiveness in increasing photosynthesis. A team from the Hong Kong University of Science and Technology (HKUST) has made significant progress in understanding carboxysomes, which are structures in certain bacteria and algae that fix carbon. This discovery could allow researchers to modify and reuse these structures, enhancing the ability of plants to transform sunlight into energy. This advancement may lead to greater photosynthesis efficiency, which could boost the global food supply and help combat global warming. Carboxysomes are tiny compartments in certain bacteria and algae that encase particular enzymes in a shell made of proteins. They perform carbon fixation, which is the process of converting carbon dioxide from the atmosphere into organic compounds that can be used by the cell for growth and energy. Scientists have been trying to figure out how these compartments put themselves together. The self-assembly model of Prochlorococcus α-carboxysome. Credit: HKUST Breakthrough in Carboxysome Research In their latest research, the team led by Prof. Zeng Qinglu, Associated Professor at HKUST’s Department of Ocean Science showed the overall architecture of carboxysomes purified from a type of bacteria called Prochlorococcus. In collaboration with Prof. Zhou Cong-Zhao of the School of Life Sciences in the University of Science & Technology of China, the team overcame one of the biggest technical difficulties in cell breakage and contamination, which would prevent the proper purification of carboxysomes. The team also proposes a complete assembly model of α-carboxysome, which has not been observed in previous studies. Prof. Zeng Qinglu(right) and one of the research paper authors Mr Li Haofu (left), PhD student in the Department of Ocean Science, showing the sample of Prochlorococcus MED4 culture. Credit: HKUST In specific, the team utilized single-particle cryo-electron microscopy to determine the structure of α-carboxysome and characterize the assembly pattern of the protein shell, which looks like a 20-sided shape with specific proteins arranged on its surface. To obtain the structure of the minimal α-carboxysome with a diameter of 86 nm, they collected over 23,400 images taken from the microscope at the HKUST Biological Cryo-EM Center and manually picked about 32,000 intact α-carboxysome particles for analysis. Internal Structure and Assembly of Carboxysomes Inside, the RuBisCO enzymes are arranged in three concentric layers, and the research team also discovered that a protein called CsoS2 helps to hold everything together inside the shell. Finally, the findings suggest that carboxysomes are put together from the outside in. This means that the inside surface of the shell is strengthened by certain parts of the CsoS2 protein, while other parts of the protein attract the RuBisCO enzymes and organize them into layers. With the support of the HKUST Biological Cryo-EM Center, the team utilized single-particle cryo-electron microscopy to determine the structure of the intact shell and characterize the overall architecture of the four-layered assembly pattern of Prochlorococcus α-carboxysome. Credit: HKUST One of the most promising applications of carboxysomes is in plant synthetic biology, whereby the introduction of carboxysomes into plant chloroplasts as the CO2-concentrating mechanism can improve photosynthetic efficiency and crop yield. “Our study unveils the mystery of α-carboxysome assembly from Prochlorococcus, thus providing novel insights into global carbon cycling,” says Prof. Zeng. The findings will also be important to slow down global warming, he says, as marine cyanobacteria fix 25% of global CO2. “Our understanding of the CO2 fixation mechanism of marine cyanobacteria will enable us to improve their CO2 fixation rate so that more CO2 can be removed from the atmosphere,” he says. Following this study, the team plans to introduce Prochlorococcus α-carboxysome into plant chloroplasts and investigate whether the minimal α-carboxysome can improve the photosynthetic efficiency in plants. They also plan to modify the carboxysome genes and make genetically modified super cyanobacteria that are able to fix carbon dioxide at very high rates, which may be able to slow down global warming. Reference: “Structure and assembly of the α-carboxysome in the marine cyanobacterium Prochlorococcus” by Rui-Qian Zhou, Yong-Liang Jiang, Haofu Li, Pu Hou, Wen-Wen Kong, Jia-Xin Deng, Yuxing Chen, Cong-Zhao Zhou and Qinglu Zeng, 8 April 2024, Nature Plants. DOI: 10.1038/s41477-024-01660-9
DVDV1551RTWW78V
Thailand sustainable material ODM solutions 》empowering your product line with advanced material solutionsBreathable insole ODM development Thailand 》where every detail is tailored to your brandis identityLatex pillow OEM production in Indonesia 》trusted by DTC and B2B brands alike